Cluster-variation-Pade-approximant method for the simple cubic Ising model
نویسنده
چکیده
The cluster-variation-Pade-approximant method is a recently proposed tool, based on the extrapolation of low- and high-temperature results obtained with the cluster-variation method, for the determination of critical parameters in Ising-like models. Here the method is applied to the three-dimensional simple cubic Ising model, and new results, obtained with an 18-site basic cluster, are reported. Other techniques for extracting nonclassical critical exponents are also applied and their results compared with those by the cluster-variation-Pade-approximant method.
منابع مشابه
O ct 1 99 9 Cluster variation – Padé approximants method for the simple cubic Ising model
The cluster variation – Padé approximant method is a recently proposed tool, based on the extrapolation of low/high temperature results obtained with the cluster variation method, for the determination of critical parameters in Ising-like models. Here the method is applied to the three-dimensional simple cubic Ising model, and new results, obtained with an 18-site basic cluster, are reported. O...
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملOrder Reduction using Modified Pole Clustering and Pade Approximations
The authors present a mixed method for reducing the order of the large-scale dynamic systems. In this method, the denominator polynomial of the reduced order model is obtained by using the modified pole clustering technique while the coefficients of the numerator are obtained by Pade approximations. This method is conceptually simple and always generates stable reduced models if the original hi...
متن کاملEffect of Anisotropy on the Critical Behaviour of Three- Dimensional Heisenberg Ferromagnets
The anisotropic nearest-neighbour Heisenberg model for the simple cubic lattice has been investigated by interpolating the anisotropy between the Ising and isotropic Heisenberg limits via general spin high-temperature series expansions of the zero-field suspectibility. This is done by estimating the critical temperature (7V3 >) and the susceptibility exponent y from the analysis of the series b...
متن کاملImproved Pade-Pole Clustering Approach using Genetic Algorithm for Model Order Reduction
Reducing the order of higher order systems by mixed approach is Improved Pade-Pole clustering based method to derive a reduced order approximation for a stable continuous time system is presented. In this method, the denominator polynomial of the reduced order model is derive by improved pole-clustering approach and the numerator polynomial are obtain through Padé approximation technique and by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 61 5A شماره
صفحات -
تاریخ انتشار 2000